STATE-OF-THE-ART RADIAL SWAGE TECHNOLOGY

CONNECTIONS THAT BREAK THE MOLD
Electrical utilities, wind and solar farms, large scale grounding projects and countless industrial projects around the world trust the tested strength and technology of the DMC Power Swage System.

Designed to meet and exceed the rigorous testing requirements of IEEE 837, our robust grounding connectors give your projects a lifetime of worry free connections and a permanent low-resistance path to ground, no matter the weather or soil conditions.

Discover the DMC Power Difference

• ULTIMATE PERFORMANCE
Made with C11000 copper and the ability to carry the equivalent current (or greater) of the conductor, our connectors have conductivity ratings at 101% IACS, ensuring your substation has the highest level of performance and reliability possible.

• FAST & CONVENIENT
All-weather operation reduces setup time and costly delays. Besides our tooling and connectors, no additional installation equipment, extra material, molds or shots are required.

• VERSATILE TOOLING
Depending on the O.D., the same Power Unit & Head Assembly used with our Grounding Connectors can also be used with our line of Cable Connectors.

• SAFE & RELIABLE
Push-button operation is simple, consistent and repeatable. Cold compression Swaging requires no special protective gear by eliminating heat, open flames and toxic fumes.

• INSTANTLY INSPECTABLE
Confirming Swage results couldn’t be easier; our “Go/No-Go” Inspection Gauge measures the Swage instantly, leaving you more time to get the job done.

GROUND CONNECTORS

• C11000 electrolytic, unrecycled copper
• Cable from #6 AWG – 1000MCM
• Rod or Rebar from 3/8” – 1”
• Tin Plating available on all parts
• Pre-drilled inspection/weep hole
• IEEE & UL Qualified

Can’t Find What You Need?
Our connectors are available in a variety of sizes to fit most any situation, but when a custom solution is needed, turn to DMC Power. Our in-house team can design, test and manufacture connectors to fit any specification or use, all under one roof at our ISO 9001:2008 certified facility.

Handheld Swage Tools are compact, repeatable and easy to use in all conditions

360° compression reduces voids, allowing the fitting to run cooler

Current Cycle Test per IEEE 837-2014
WHY TAKE A CHANCE WITH CRITICAL UTILITY INFRASTRUCTURE?

SWAGED

Wire strands become cold-welded to the connector creating a superior connection without the heat!

TERMINALS

GC910

1-HOLE OFFSET PAD TERMINAL

- 1"-2"
- ~1 lbs
- Copper
- Tin-Plating
- ORDERING EXAMPLE
 - GC910B02GT
 - #2 AWG Barrel to 1", 1-Hole Offset Pad; Tin-Plated

GC920

2-HOLE OFFSET PAD TERMINAL

- 1"-2"
- ~1¼ lbs
- Copper
- Tin-Plating
- ORDERING EXAMPLE
 - GC920B100T
 - 1000 MCM Barrel to 2", 2-Hole Offset Pad; Tin-Plated

GC929

NO-HOLE OFFSET PAD TERMINAL

- 1"-2"
- ~1¼ lbs
- Copper
- Tin-Plating
- ORDERING EXAMPLE
 - GC929B030T
 - 300 MCM Barrel to 1-3/4", No-Hole Offset Pad; Tin-Plated

GC922

2-HOLE OFFSET PAD DUAL CABLE TERMINAL

- 1"-2"
- ~1¼ lbs
- Copper
- Tin-Plating
- ORDERING EXAMPLE
 - GC922B004-004T
 - 4/0 AWG Dual Cable Barrel to 1-3/4", 2-Hole Offset Pad; Tin-Plated

GC912

1-HOLE OFFSET PAD DUAL CABLE TERMINAL

- 1"-2"
- ~1 lbs
- Copper
- Tin-Plating
- ORDERING EXAMPLE
 - GC912B050-050T
 - 500 MCM Dual Cable Barrel to 2", 1-Hole Offset Pad; Tin-Plated
Simplify Your Ground Grid Using 3 Connectors

DMC Power Grounding connectors can be used in a variety of ways beyond their intended purpose. In fact, many customers have completed their entire grid with only the 3 parts on the following page:

GC730
3-TAP TEE

GC731
THRU RUN TEE

GC732
OFFSET SPLIT RUN ELBOW

GC733
SPLIT RUN TEE

GC734
THRU HOLE CROSS

GC735
OFFSET DUAL SPLIT CROS

GC740
4 TAP CROSS

GC741
THRU HOLE CROSS

GC742
OFFSET DUAL SPLIT CROSS

GC743
OFFSET SPLIT RUN ELBOW

GC744
THRU HOLE CROSS

Ordering Example

- **GC733**
 SPLIT RUN TEE
 Tee with 250 MCM Split Run and 1/2" Ground Rod Tap

- **GC731**
 THRU RUN TEE
 Tee with 20 AWG Thru Run and 250 MCM Tap

- **GC734**
 THRU HOLE CROSS
 Cross with 250 MCM Thru Run and two, 2/0 AWG Taps

- **GC735**
 OFFSET DUAL SPLIT CROSS
 Offset Cross with 3/0 AWG and 3/0 AWG Split Runs

Visit DMCPower.com to see additional Cross, Tee and Elbow connector styles.
GC739
SPLIT RUN ELBOW

<table>
<thead>
<tr>
<th>ORDERING EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC739B004-050</td>
</tr>
<tr>
<td>Elbow with 4/0 AWG Split Thru Run and 500 MCM Tap</td>
</tr>
</tbody>
</table>

GC736
THRU RUN ELBOW

<table>
<thead>
<tr>
<th>ORDERING EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC736B02G-02G</td>
</tr>
<tr>
<td>Elbow with #2 AWG Thru Run and #2 AWG Tap</td>
</tr>
</tbody>
</table>

GC759
OFFSET DUAL SPLIT ELBOW

<table>
<thead>
<tr>
<th>ORDERING EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC759B003-025</td>
</tr>
<tr>
<td>Offset Elbow with 3/0 AWG and 250 MCM Split Thru Runs</td>
</tr>
</tbody>
</table>

GC749
OFFSET SPLIT AND THRU RUN ELBOW

<table>
<thead>
<tr>
<th>ORDERING EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC749B002-050</td>
</tr>
<tr>
<td>Offset Elbow with 2/0 AWG Split Thru Run and 500 MCM Thru Run</td>
</tr>
</tbody>
</table>

GC888 / GC721
SPLIT PARALLEL

GC739
SPLIT ELBOW

GC759
DUAL SPLIT OFFSET CROSS
GC721
SPLIT PARALLEL

ORDERING EXAMPLE
GC721B025-025
250 MCM to 250 MCM Split Parallel

GC720
SPLICE

ORDERING EXAMPLE
GC720B025-500
250 MCM to 1/2” Steel Rod Splice

GC888
REDUCED SPLIT PARALLEL

ORDERING EXAMPLE
GC888B002-002
2/0 AWG to 2/0 AWG Reduced Split Parallel

• Optimized design improves conductivity and performance while reducing material cost
• Solid web separation of conductors
• Single Swage installation
• Removable caps for easy installation
• Can be used as splice, tee, elbow or cross
• Fully tested and certified to all IEEE standards

APPLICATION NOTES

DMC Power supplies all styles of high quality connectors needed to complete your grounding grid. With the push of a button on our lightweight tooling you can connect ground cables and rods in as little as 10 seconds. Trust the DMC Power Swage System for safe, repeatable, instantly inspectable and proven ground connections.

1. GC920 – 2-Hole Terminal
2. GC910 – 1-Hole Terminal
3. GC740 – 4-Tap Cross
4. GC729 – 2-Tap Elbow
5. GC731 – Thru Run Tee
6. GC721 – Split Parallel
7. GC743 – Offset Split Elbow
8. GC739 – Split Run Elbow
9. GC759 – Offset Dual Split Elbow
10. GC736 – Thru Run Elbow
11. GC720 – Splice
12. GC741 – Thru Run Cross
13. GC730 – 3-Tap Tee
14. GC746 – Alternate Thru Run Tee
15. GC733 – Split Run Tee
16. GC740 – 4-Tap Cross
17. GC760 – Fence Post Connector
18. GC888 – Reduced Split Parallel

YOUR ONE STOP GROUND SOLUTION
GC765

FENCE POST CONNECTOR TO NEMA PAD

- Weight: ~3 lbs
- Copper Tin Plating

ORDERING EXAMPLE

GC765B 32-000-920 T

2" Fence Post Bracket to a Right Aligned 2-Hole NEMA Pad; Tin-Plated

GC762

SWINGING GATE CONNECTOR

- Weight: ~5½ lbs
- Copper Tin Plating

ORDERING EXAMPLE

GC762B 24-64-002 D T

1-1/2" Swinging Gate Frame to 4" Gate Post with Dual 2/0 AWG Splices; Tin-Plated

GC760

FENCE POST CONNECTOR

- Weight: ~4 lbs
- Copper Tin Plating

ORDERING EXAMPLE

GC760B 40-002-002 T

2-1/2" Fence Post Bracket to Dual 1/0 AWG Splices

GC761

FENCE POST CONNECTOR WITH SLOTTED BOLT

- Weight: ~1½ lbs
- Copper Tin Plating

ORDERING EXAMPLE

GC761B 24-02G

1-1/2" Fence Post Bracket to #2 AWG Slotted Bolt
GROUNDING CABLE AND ROD IDENTIFIER NUMBERS

- Any combination of wire and/or rod connector is available
- The largest designator determines the part OD
- Consult DMC Power for Metric Rods and Rebar identifier code

Copper Cable (Ref. ASTM B8)

<table>
<thead>
<tr>
<th>Bare Stranded Copper Size (AWG/kcmil)</th>
<th>Dead Soft Annealed Copperweld (Stranding/AWG)</th>
<th>Bare Stranded Copper Size (mm²) SI/Metric</th>
<th>Connector Identifier Number</th>
<th>Connector O.D. (±0.015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6 AWG</td>
<td>1/#6</td>
<td>10.8 & 12.6</td>
<td>06G</td>
<td>1.00 for parallel</td>
</tr>
<tr>
<td>#4 AWG</td>
<td>1/#4 & 3/#10</td>
<td>14.1, 16, 17.8 & 19.6</td>
<td>04G</td>
<td>1.25</td>
</tr>
<tr>
<td>#2 AWG</td>
<td>1/#2, 3/#8, 3/#9 & 7/#10</td>
<td>22, 25, 27.6, 29.2, 34.4 & 35</td>
<td>02G</td>
<td>2.00 for parallel</td>
</tr>
<tr>
<td>1/0 AWG</td>
<td>3/#5, 3/#6 & 3/#7</td>
<td>48.3 & 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/0 AWG</td>
<td>7/#8 & 7/#9</td>
<td>70 & 74.9</td>
<td>002</td>
<td>2.00 for parallel</td>
</tr>
<tr>
<td>3/0 AWG</td>
<td>7/#7 & 7/#6</td>
<td>83.6, 93.3 & 95</td>
<td>003</td>
<td>1.50</td>
</tr>
<tr>
<td>4/0 AWG</td>
<td>7/#5</td>
<td>96.8, 116 & 120 (Compacted Wires)</td>
<td>004</td>
<td>2.25 to 2.75 for parallel</td>
</tr>
<tr>
<td>250 MCM</td>
<td>19/#9</td>
<td>120 & 134</td>
<td>025</td>
<td></td>
</tr>
<tr>
<td>#4 AWG</td>
<td>1/#4 & 3/#10</td>
<td>14.1, 16, 17.8 & 19.6</td>
<td>04G</td>
<td></td>
</tr>
<tr>
<td>#2 AWG</td>
<td>1/#2, 3/#8, 3/#9 & 7/#10</td>
<td>22, 25, 27.6, 29.2, 34.4 & 35</td>
<td>02G</td>
<td>2.00 for parallel</td>
</tr>
<tr>
<td>1/0 AWG</td>
<td>3/#5, 3/#6 & 3/#7</td>
<td>38.2, 48.3 & 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/0 AWG</td>
<td>7/#8 & 7/#9</td>
<td>70 & 74.9</td>
<td>002</td>
<td></td>
</tr>
<tr>
<td>3/0 AWG</td>
<td>7/#7 & 7/#6</td>
<td>83.6, 93.3 & 95</td>
<td>003</td>
<td></td>
</tr>
<tr>
<td>4/0 AWG</td>
<td>7/#5</td>
<td>96.8, 116 & 120 (Compacted Wires)</td>
<td>004</td>
<td></td>
</tr>
<tr>
<td>250 MCM</td>
<td>19/#9</td>
<td>120 & 134</td>
<td>025</td>
<td></td>
</tr>
<tr>
<td>300 MCM</td>
<td>19/#8</td>
<td>145.8, 146, 150 & 185 (Cmpctd Wires)</td>
<td>030</td>
<td></td>
</tr>
<tr>
<td>350 MCM</td>
<td>-</td>
<td>181.6, 182 & 185</td>
<td>035</td>
<td></td>
</tr>
<tr>
<td>400 MCM</td>
<td>19/#7</td>
<td>194 & 240 (Compacted Wires)</td>
<td>040</td>
<td></td>
</tr>
<tr>
<td>450 MCM</td>
<td>-</td>
<td>-</td>
<td>045</td>
<td></td>
</tr>
<tr>
<td>500 MCM</td>
<td>19/#6</td>
<td>240</td>
<td>050</td>
<td></td>
</tr>
<tr>
<td>500 ROPELAY</td>
<td>19/#5</td>
<td>300</td>
<td>053</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>7/#4</td>
<td>-</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>750 MCM</td>
<td>-</td>
<td>-</td>
<td>075</td>
<td>1.875</td>
</tr>
<tr>
<td>1000 MCM</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Ground Rod

<table>
<thead>
<tr>
<th>Size</th>
<th>Material Type</th>
<th>Connector Identifier Number</th>
<th>Connector O.D. (±0.015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>#3 Steel rebar</td>
<td>003</td>
<td>1.25</td>
</tr>
<tr>
<td>1/2"</td>
<td>Copperclad-plain & sectional with 1/2" thread</td>
<td>025</td>
<td>2.00 for parallel</td>
</tr>
<tr>
<td>1/2"</td>
<td>Steel & copperclad sectional with 9/16" thread & #4 Steel rebar</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>5/8"</td>
<td>Copperclad-plain & sectional with 5/8" thread</td>
<td>562</td>
<td></td>
</tr>
<tr>
<td>5/8"</td>
<td>Steel plain & #5 Steel rebar</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td>Copperclad-plain & sectional with 3/4" thread</td>
<td>682</td>
<td></td>
</tr>
<tr>
<td>3/8"</td>
<td>#3 Steel rebar</td>
<td>003</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>Copperclad-plain & sectional with 1/2" thread</td>
<td>025</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>Steel & copperclad sectional with 9/16" thread & #4 Steel rebar</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>5/8"</td>
<td>Copperclad-plain & sectional with 5/8" thread</td>
<td>030</td>
<td></td>
</tr>
<tr>
<td>5/8"</td>
<td>Steel plain & #5 Steel rebar</td>
<td>035</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td>Copperclad-plain & sectional with 3/4" thread</td>
<td>040</td>
<td></td>
</tr>
<tr>
<td>3/4"</td>
<td>Steel plain</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>Copperclad-plain & sectional with 1" thread</td>
<td>914</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>Steel plain</td>
<td>950</td>
<td></td>
</tr>
</tbody>
</table>
GROUND CONNECTOR ORDERING NOMENCLATURE

GROUND CONNECTORS

<table>
<thead>
<tr>
<th>GCXXX</th>
<th>B</th>
<th>XXX – XXX</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **BASE CONNECTOR STYLE**
2. **MATERIAL CODE** (B=Copper)
3. **RUN / RUN1 / TAP1** (Cable or Ground Rod Identifier Number)
4. **TAP / TAP2 / RUN2** (Cable or Ground Rod Identifier Number)
5. **TIN PLATED FINISH** (Optional)

ORDERING EXAMPLE:

<table>
<thead>
<tr>
<th>GC731</th>
<th>B</th>
<th>025</th>
<th>682T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Thru Hole Tee
- 250 MCM Cable Run
- 3/4” Copper clad rod Tap Tin Plating

FENCE POST CONNECTORS

<table>
<thead>
<tr>
<th>GCXXX</th>
<th>B</th>
<th>XX – XXX – XXX</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **BASE CONNECTOR STYLE**
2. **MATERIAL CODE** (B=Copper)
3. **PIPE SIZE IDENTIFIER NUMBER** (See chart on page 19)
4. **LEFT BARREL IDENTIFIER NUMBER** (Cable or Ground Rod; Use “000” for none)
5. **RIGHT BARREL IDENTIFIER NUMBER** (Cable or Ground Rod; Use “000” for none)
6. **TIN PLATED FINISH** (Optional)

SINGLE BARREL ORDERING EXAMPLE:

<table>
<thead>
<tr>
<th>GC760</th>
<th>B</th>
<th>32</th>
<th>002</th>
<th>000T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cable/Rod to Fence Post
- 2” Pipe
- 750 MCM Copper clad Left Barrel
- No Right Barrel
- Tin Plating

DUAL BARREL ORDERING EXAMPLE:

<table>
<thead>
<tr>
<th>GC760</th>
<th>B</th>
<th>44</th>
<th>025</th>
<th>030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cable/Rod to Fence Post
- 4” Pipe
- 250 MCM Cable Left Barrel
- 300 MCM Cable Right Barrel
- No Finish

TO FIND THE CORRECT TOOLING:

1. Select required connector
2. Use the chart on page 38 to determine the Connector Identifier Number and Connector O.D. Use the larger O.D. for two different sized runs
3. Select the proper Head Assembly & Inspection Gauge based on the Connector O.D.

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Connector Identifier #</th>
<th>Connector O.D.</th>
<th>Swage Tool Head Assembly</th>
<th>Inspection Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tee, Splice, Cross, Elbow, Terminal, Fence Connector</td>
<td>02G 04G 06G 002 003</td>
<td>1.25</td>
<td>DLT45CLHA03975</td>
<td>GCIC200-03975</td>
</tr>
<tr>
<td></td>
<td>004 025 050 062 025</td>
<td></td>
<td>DLT45CLHA05565</td>
<td>GCIC200-05565</td>
</tr>
<tr>
<td></td>
<td>02G 04G 002 003 004</td>
<td>1.50</td>
<td>DLT45CLHA08745</td>
<td>GCIC200-08745</td>
</tr>
<tr>
<td></td>
<td>025 030 035 040 045</td>
<td></td>
<td>DLT45CLHA11130</td>
<td>GCIC200-11130</td>
</tr>
<tr>
<td></td>
<td>050 053 050 750 914</td>
<td></td>
<td>DLT45CLHA15900</td>
<td>GCIC200-15900</td>
</tr>
<tr>
<td></td>
<td>002 003 004 025 035</td>
<td>2.00</td>
<td>DLT45CLHA02500</td>
<td>DLT45CLHA02500</td>
</tr>
<tr>
<td></td>
<td>02G 04G 06G 060 625</td>
<td>1.50</td>
<td>DLT45CLHA05565</td>
<td>GCIC200-05565</td>
</tr>
<tr>
<td>Parallel</td>
<td></td>
<td></td>
<td>DLT45CLHA08745</td>
<td>GCIC200-08745</td>
</tr>
<tr>
<td></td>
<td>002 003 004 025 035</td>
<td>2.00</td>
<td>DLT45CLHA11130</td>
<td>GCIC200-11130</td>
</tr>
<tr>
<td></td>
<td>025 050 562 600 625</td>
<td>2.25</td>
<td>DLT45CLHA15900</td>
<td>GCIC200-15900</td>
</tr>
</tbody>
</table>

Exceptions exist for some cable size combinations; refer to individual model drawing to confirm tooling. DLT45- Head Assemblies use the DLT45MAPW0000 Power Unit

www.dmcpower.com